大学入試過去問

「2次式で表して\(t\)とおく方法」を使って関数の最大値と最小値を求めてみよう!関数\[f(θ)=\frac{1}{2}cos2θ+\frac{cosθ}{tan^2θ}\\−\frac{1}{tan^2θcosθ}\]\(\displaystyle\left(0<θ<\frac{π}{2}\right)\)の最小値とそのときの\(θ\)の値を求めよ

最大値、最小値を求める方法の一つに「2次式で表して\(t\)とおく」がある今回はこの方法を使って解く また\(cosθ\)や\(tanθ\)が混在しているのでどちらか一つにまとめなければならない 関数\(f(θ)\)の式の最初の項が\(cosθ\)なので、素直に\(cosθ\)に統一するように考えよう あとは倍角の公式や加法定理など、知ってる形に少しずつ近づけていけばOK※\(cosθ\)と\(tanθ\)なので、三角関数の合成は使えないよ 解き方の手順 解き方の手順①\(\displaystyle\frac{cosθ}{tan^2θ}−\frac{1}{tan^2θcosθ}\)の部分をまとめて\(cosθ\)だけの式にする②\(cos2θ\)を2倍角の公式を使って変形する③\(cosθ=t\)として2次関数にする④平方完成して最小値を求める⑤\(t\)を\(cos...
数学公式

2倍角の公式

\(y=cos\color{red}{2x}-2sin\color{red}{x}-1\)のように、\(2θ\)と\(θ\)が混在した式では、倍角の公式で角を統一します 三角関数2倍角の公式を使って解く問題の解説はこちらを確認してください 2倍角の公式 \[2倍角の公式\] \begin{eqnarray}sin2θ=&2sinθcosθ\end{eqnarray} \begin{eqnarray}cos2θ=&cos^2θ-sin^2θ\\=&2cos^2θ-1\\=&1-2sin^2θ\end{eqnarray} \begin{eqnarray}tan2θ=&\frac{2tanθ}{1-tan^2θ}\end{eqnarray} 半角の公式と3倍角の公式 2倍角の公式だけでなく、半角の公式や3倍角の公式もよく使用します ま...
三角関数

2倍角の公式を使って三角関数の最大値と最小値を求める方法は?\(0≦x≦2π\)の範囲で、\(y=cos2x-2sinx-1\)の最大値と最小値を求めよ

この問題はひとつの式の中に\(sin\)と\(cos\)が混在しているので三角関数の合成をして、関数の種類を統一する必要があります しかし、\(cos\)は\(cos\color{red}{2x}\)、\(sin\)は\(-2sin\color{red}{x}\)となっていて、それぞれの角の大きさが違うため三角関数の合成は使えません この問題は\(cos2x\)が2倍角になっているので、まず初めに2倍角の公式を使って\(sin\)だけの式に変形してから三角関数の合成を行いましょう 解き方の手順 解き方の手順①\(sin\) と\(cos\)が混在している式なので、変形して解きやすくするこのとき、\(cos2x\)が2倍角なので、2倍角の公式を使って\(sin\)に統一するとよい②\(sin\)に統一したあと、\(sinx=t\)と置き換えるとさらに解きやすくなる③問題...