関数\(y=-x\),\(y=x\),\(y=\sqrt{1+x^2}\)のグラフをそれぞれ\(l\),\(m\),\(C\)とする。また、\(C\)上の点(\(a\),\(\sqrt{1+a^2})\)における接線を\(n\)とする。\(n\)と\(l\)との交点を\(P\)とし、\(P\)の\(x\)座標を\(s\)とする。また、\(n\)と\(m\)の交点を\(Q\)とし、\(Q\)の\(x\)座標を\(t\)とする。\(s\)および\(t\)を\(a\)を用いた式で表せ
\(n\)と\(l\)との交点\(P\)、\(n\)と\(m\)の交点を\(Q\)→交点の座標を考えたいが、\(n\)は式がはっきりとわかっていないので、問題を解き始める前に計算をしておく必要がある。 解き方の手順①まず\(n\)の式を求める②点Pの\(x\)座標を\(n\)と\(l\)に代入して\(y\)座標を求める③ふたつの\(y\)座標をイコールで繋いで方程式を作る④作った方程式を解く⑤Qも同様にして解く \(n\)は\(C\)上の点(\(a\),\(\sqrt{1+a^2}\))における接線なので、接線を求める公式\(y-f(a)=f'(a)\cdot(x-a)\)を使えば\(n\)は求められる。よって、\(C\)の式と\(C\)を微分した式を求め、公式に当てはめて\(n\)を求めよう。 \(C\)の式\(f(x)=(1+x^2)^{\frac{1}{2}}\...