接線の方程式はどうやって求めたらいいの?\(y=x^3−4x\)と\((1,−3)\)における接線で囲まれた図形の面積を求めよ
問題の関数と接線をグラフにすると下の図のようになる 積分するだけで簡単に面積は求められるが、上図の黒い点、つまり接点の座標\((1,−3)\)だけわかっていても、上図の赤い点、\(y=x^3−4x\)と接線の方程式の交点の座標がわからなければ解くことができない※交点の座標は\(x\)座標がわかればOK よって、まずは接線の方程式を求めて\(y=x^3−4x\)との交点の座標を求めるところから始めよう 問題を解く手順①微分係数から接線の方程式を求める②\(y=x^3−4x\)と接線の交点の座標(\(x\)座標のみ)を求める③積分して面積を求める \(y=x^3−4x\)と\((1,−3)\)における接線の方程式を求めよう 接線の方程式の公式はこちら 接線の方程式を求めるためにはまず\(y=x^3−4x\)を微分した式に接点の\(x\)座標を代入して計算する→この値が接線...