複素数と方程式

式変形をしてから代入するのがポイント!0でない複素数\(α\),\(β\)が等式\((α^2+3αβ)^2−9β^4=0\)を満たすとする。\(t=\frac{α}{β}\)とおくとき、\(t\)を求めよ。

\(t=\frac{α}{β}\)のままでは\(t\)の値を求められないので変形する\(β=▲\)の形に変形するのは手間なので、素直に\(α=●\)の形にする 変形して元の式に代入後、2次方程式の形になるまで式を整理することがポイント 解き方の手順①\(t=\frac{α}{β}\)を\(α=●\)の形に変形する②変形して求めた\(α\)の値を等式\((α^2+3αβ)^2−9β^4=0\)に代入する③式を整理する(2次方程式になる)④因数分解して\(t\)の値を求める まずは\(t=\frac{α}{β}\)を変形しよう \(t=\frac{α}{β}\)より\(α=tβ\)と変形できる \(α=tβ\)を等式\((α^2+3αβ)^2−9β^4=0\)に代入して式を整理する \(\{(tβ)^2+3(tβ)β\}^2−9β^4=0\)\(\{(tβ)^2+3tβ^...
大学入試過去問

関数\(y=-x\),\(y=x\),\(y=\sqrt{1+x^2}\)のグラフをそれぞれ\(l\),\(m\),\(C\)とする。また、\(C\)上の点(\(a\),\(\sqrt{1+a^2})\)における接線を\(n\)とする。\(n\)と\(l\)との交点を\(P\)とし、\(P\)の\(x\)座標を\(s\)とする。また、\(n\)と\(m\)の交点を\(Q\)とし、\(Q\)の\(x\)座標を\(t\)とする。\(s\)および\(t\)を\(a\)を用いた式で表せ

\(n\)と\(l\)との交点\(P\)、\(n\)と\(m\)の交点を\(Q\)→交点の座標を考えたいが、\(n\)は式がはっきりとわかっていないので、問題を解き始める前に計算をしておく必要がある。 解き方の手順①まず\(n\)の式を求める②点Pの\(x\)座標を\(n\)と\(l\)に代入して\(y\)座標を求める③ふたつの\(y\)座標をイコールで繋いで方程式を作る④作った方程式を解く⑤Qも同様にして解く \(n\)は\(C\)上の点(\(a\),\(\sqrt{1+a^2}\))における接線なので、接線を求める公式\(y-f(a)=f'(a)\cdot(x-a)\)を使えば\(n\)は求められる。よって、\(C\)の式と\(C\)を微分した式を求め、公式に当てはめて\(n\)を求めよう。 \(C\)の式\(f(x)=(1+x^2)^{\frac{1}{2}}\...