いまチュウぶ数学
  • ホーム
  • 全ての記事
  • 高校数学解説
  • 兵庫県第2学区公立高校情報
  • サイトマップ
  • お問い合わせ
  • プライバシーポリシー
  • ブログのヌシ・きょーしつちょーのプロフィールPage

交点を通る直線の方程式

図形と方程式

2つの円の交点の求め方はコレ!\(x^2+y^2=4\)と\(x^2+y^2-4x-2y-8=0\)の交点を通る直線の式を求めよ

複雑そうに見えるけれど、2つの円の2つの交点を通る直線を求める公式に当てはめるだけの簡単な問題だよ この問題を解くポイントとして次の事を覚えよう \[k(x^2+y^2-4)+x^2+y^2-4x-2y-8=0\]で\(k=-1\)にすると2つの円の2つの交点を通る式になる※横スクロールできます 上のポイントに従って式を作ると\[-(x^2+y^2-4)+x^2+y^2-4x-2y-8=0\]となるよ 作った式を解いていこう \begin{eqnarray}-(x^2+y^2-4)+x^2+y^2-4x-2y-8=0\\-x^2-y^2+4+x^2+y^2-4x-2y-8=0\\-4x-2y-4=0\\-2y=4x+4\\y=-2x-2\end{eqnarray} 計算できたら答えの完成 よって\(x^2+y^2=4\)と\(x^2+y^2-4x-2y-8=0\)の交...

カテゴリー

  • 兵庫県第2学区公立高校情報
  • 高校数学解説

最近の解説

  • 県立伊丹高校
  • 川西緑台高校
  • \[ab(a+b)+bc(b+c)+ca(c+a)+3abc\]の因数分解と\[a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc\]の因数分解
  • 正四面体の4面を赤,青,黄,緑の4色で塗り分ける方法は何通りあるか
  • よく出題される少し複雑な因数分解・その③\(x^3-5x^2-4x+20\)

おすすめの解説

  • 対数関数の最大・最小で底\(a\)が1より小さい(\(0<a<1)\)ときの答えの求め方―\(y=\log_{\frac{1}{3}}x+\log_{\frac{1}{3}}(6-x)\)の最小値はどうやって求める?―
  • 先に4勝した方が優勝となる確率―日本シリーズ―
  • 3直線が三角形を作らない条件とは?3直線\(x+3y=2\)、\(x+y=0\)、\(ax−2y=−4\)が三角形を作らないような定数\(a\)を求めよ

人気の解説

  • 最短経路の確率なのに同じものを含む順列でなぜ解かない?反復試行の確率を使う理由
  • 数列Σの式のまとめ方、なぜ因数分解をした形で答える必要がある?\(\displaystyle\sum_{k=1}^{n}(k^2-2k)\)の和を求めよ
  • 範囲が決まっていない三角関数の最大値と最小値はこうやって考えよう\(y=sinx+2cosx\)の最大値と最小値を求めよ

最近のコメント

表示できるコメントはありません。
imatube数学わかりやすい解説

数学の問題集や入試問題を解いていて「解説を読んでもわからない」という人たちに「わかった!解ける!」と思える解説をお届けします

  • home
  • お問い合わせ
  • サイトマップ
  • ブログのヌシ・きょーしつちょーのプロフィールPage
  • プライバシーポリシー
  • 全ての記事

©imatube