三角不等式の解き方がわからない人必見!\(0≦x<2\)のとき次の不等式\(\sqrt{2}(sinx+cosx)>1\)を解きなさい
解き方の手順①式を展開する②三角関数の合成を行い、さらに式を整理する③当てはまる\(x\)の範囲を考える まずは式を展開する \(\sqrt{2}(sinx+cosx)>1\)のまま\(x\)の範囲を考えることはほぼ不可能まずはひとつずつ丁寧に、式を展開するところから始めよう \begin{eqnarray}\sqrt{2}(sinx+cosx)&>&1\\\sqrt{2}sinx+\sqrt{2}cosx&>&1\end{eqnarray} 展開したら次は三角関数の合成をしよう 次は三角関数の合成をしよう 問題の式には\(sin\)と\(cos\)が混在しているので、三角関数の合成をして\(sin\)だけの式に変換し、\(x\)の範囲を考えやすくしよう 「三角関数の合成」の方法 合成すると\begin{eqnarra...