1. ホーム
  2. 大学入試
2次関数

2次関数を求める問題の答えの形―\(y=a(x-p)^2+q\)、\(y=ax^2+bx+c\)、\(y=a(x-α)(x-β)\)のどれを選ぶ?―

2次関数を求めよ、という問題を解いて答え合わせをすると、模範解答は自分の答えと違う形で書かれている… ここで、模範解答と違う自分の解答は間違いなのか、それともどんな形で答えても正解として良いのか悩む人も多いでしょう 絶対に模範解答通りの形でなければならないのか、本当はどちらでもいいのか、そもそもなぜ模範解答はいくつかある答えの形式から、「その形」を選んで答えているのか、これらの疑問を解消していきます 模範解答通りの書き方でなくても正解としてもらえる 2次関数の式を求める問題の答えは、次の3通りのうちのどれかで書かれています 結論から言うと、上記3つの形のどれかで答えていれば、その問題は正解となります 「どれでもいいなら、自分の好きな形で答えてもいいよね」と言いたくなる気持ちもわかりますが、模範解答で選ばれてる形には「その問題を解くにあたって、最も答えを求めやすい形だか...
数学公式

接線の方程式の求め方(微分)

接線の方程式 関数\(y=f(x)\)のグラフ上の点\((a,f(a))\)における接線、つまり、接点を通る直線の方程式は \(y−f(a)=f'(a)(x−a)\) と表すことができる 接線の方程式を利用する問題の例 直線の方程式を求める公式\(y−f(a)=m(x−a)\)で関数\(f(x)\)の\(x\)の増加量が限りなく\(0\)に近い直線(接点と考えて良い)の傾き\(m\)、つまり微分係数が接線の方程式の傾きになる よって、\(m=f'(x)\) グラフ上にある点(接点)を通る接線の方程式の求め方 グラフ上にある点(接点)を通る接線の方程式を求める方法 ①まず微分する②微分した式に接点の\(x\)座標を代入して微分係数を求める→接線の方程式の傾き③接線の方程式に接点の座標と②で求めた微分係数を代入して完成 (例)\(y=x^3−4\)のグラフ上の点\((1,...
場合の数と確率

最短経路の確率なのに同じものを含む順列でなぜ解かない?反復試行の確率を使う理由

碁盤の目の最短経路に関する場合の数や確率の問題は、同じものを含む順列を使うと答えを求められます しかし、確率の問題の中には同じものを含む順列ではなく「反復試行の確率」を使って解くものがあります 同じ碁盤の目の最短経路に関する確率の問題なのに、なぜ解き方が違うのでしょうか  その理由は、問題文の中の「ある一言」にあります では、反復試行の確率を使って解く最短経路の問題を、例題を使って説明していきます 碁盤の目の道路の最短経路の問題 【例題】図のような碁盤の目の道路がある。いま、A地点にいる人が、B地点まで最短距離で向かうとする。ただし、2通りの選び方のある交差点では、どちらを選ぶかは\(\frac{1}{2}\)の確率とする。このとき、C地点を通る確率を求めよ。 よくある間違い この問題のよくある間違いは、同じものを含む順列を使って解いてしまうことです 以下に間違いを書...
三角関数

\(θ\)の範囲が指定されていない三角関数の最大値と最小値は簡単に求められる

三角関数では最大値と最小値を求める問題も頻繁に出題されます 今回は最大値と最小値を求める問題の中でも、\(θ\)の範囲が指定されていない問題の解き方を説明していきます ※範囲が決まっていない三角関数の最大値と最小値のその他の問題はこちら \(θ\)の範囲が決められていても決められていなくても、考え方は同じ 三角関数の最大値と最小値を求める問題のほとんどは、問題文の中に\((0≦θ<π)\)や\((0≦θ<2π)\)などと書かれています つまり、これらの問題は\(θ\)の範囲が決められていて、決められた\(θ\)の範囲の中にある最も大きい値と最も小さい値がその問題の答えとなります では、範囲指定のない三角関数の最大値と最小値はどうやったら求められるでしょうか 範囲が決まっていない三角関数は、その関数の全ての値の中で最も大きい値と最も小さい値が答えとなります ...
数列

いろいろな数列の和で\(Σ\)の式の作り方

簡単な等差数列や等比数列ならばすぐに\(Σ\)の式を作れるけれど、少し複雑になると式が作れなくなる、という人は意外とたくさんいます そして解説を読んで納得できても「そんなの思いつかない」「閃かない」と悪態をつく… でも高校数学の問題は「思いつき」や「閃き」で解くものではなく、公式や仕組みを理解し、そして「解法のパターンを暗記」すれば簡単に解けます 以下はいろいろな数列の\(Σ\)の式を作るときのパターンの紹介です ※数列を因数分解でまとめる詳しい方法はこちら ※各項が数列の和になっている数列の一般項の求め方 第\(k\)項\(a_k\)は因数ごとに分けて考える 数列の和は、第\(k\)項\(a_k\)を求め、\(\sum_{k=1}^{n}a_k\)を計算すれば求めらます計算は複雑ですが立式はめちゃくちゃ簡単です さらっと「簡単です」と言い切られても、数学が苦手な人に...
2次関数

2次関数で平方完成する方法と計算ミスを減らす方法

2次関数の問題には平方完成をしなければ解けない問題がたくさんあります しかし、ちょっとレベルの高い問題になると、関数の式の中に分数や文字が存在したり、文字に着目して式を整理する必要があったりと、非常にややこしくなります 複雑な式を平方完成すると、当たり前ですが計算ミスの可能性が高くなります 平方完成をする過程で計算ミスをすると、もうその大問全てを間違ってしまうと言っても過言ではありません 数学で高得点を狙うためには、どんなに複雑な式でも必ず完璧に平方完成できるようになっておく必要があります 平方完成とは 平方完成とは中学生のときに学習した2次方程式の解を求めるときに使う方法のひとつで、「\(x\)の係数の\(\frac{1}{2}\)の2乗を両辺に加える」という変形を行うことを言います2次方程式では、この方法で式を変形することで平方根の考え方を使った解き方へと繋がり、...
数と式

2種類以上の文字を含む式の因数分解は次数の低い文字に着目しよう!計算方法を解説

2種類の文字を含む式の因数分解の解き方について解説します 2種類の文字を含む式の因数分解は、慣れれば難しいものではないので、ただひたすら練習するだけですでも、慣れないうちは疑問がたくさん出てくるでしょう そんな疑問をひとつひとつ丁寧に解説していきます 2種類以上の文字を含む式を因数分解する時は、最も次数の低い文字に着目し、共通因数を作り出そう 2種類以上の文字を含む式の因数分解の解き方のポイントは「最も次数の低い文字に着目して共通因数を作り出す」です 最も次数の低い文字に着目して同類項を少しずつまとめていくだけで、他に何も特別なことはしません もし、文字に着目して同類項をまとめることができない場合は、数Ⅰの教科書の最初のページから復習してください基本をしっかり身につけると因数分解も自然と解けるようになります では、最も次数の低い文字に着目して解いていく方法を以下の例題...
数列

数列Σの式のまとめ方、なぜ因数分解をした形で答える必要がある?\(\displaystyle\sum_{k=1}^{n}(k^2-2k)\)の和を求めよ

数列の和を求める問題を解いて答え合わせをすると、模範解答は因数分解した形で書かれている… ここで、因数分解していない自分の解答は間違いなのか、それとも因数分解していなくても正解として良いのか悩む人も多いでしょう 絶対に因数分解した形でなければならないのか、本当はどちらでもいいのか、そもそもなぜ模範解答は因数分解した形で答えているのか、これらの疑問を解消していきましょう ※数列Σの式を因数分解してまとめる方法をさ更に知りたい方はこちら 実は因数分解した形でなくても正解としてもらえる 実は因数分解した形ではなく、項を並べる形(展開した形)で答えても解答が一致していれば正解としてもらえます 「どちらでもいいならわざわざ因数分解なんてしなくてもいいじゃない」と思う人もいるでしょう でも、答えはできる限り因数分解した形にしておくことをお勧めします いや、できる限りというより、必...
微分法と積分法

任意の1次関数はどうやって表すの?\(f(x)=ax^2+bx+c\)が\(f(0)=1\)で任意の1次関数\(g(x)\)に対して常に \(\int_0^{1} f(x)g(x)dx=0\)が成り立つとき、\(a\),\(b\),\(c\)の値を求めよ

\(f(x)=ax^2+bx+c\)で\(f(0)=1\)とわかっているから\(c\)の値はすぐに求められる まず\(c\)を求めたあとに\(a\)と\(b\)の値を求めていくが、ここからどうしていいかわからなくなる じつは解き方はとても簡単で、\(\int_0^{1} f(x)g(x)dx=0\)の\(f(x)\)に\(ax^2+bx+c\)を、\(g(x)\)に1次関数の式を代入して計算すると答えに辿りつける しかし、1次関数の式ははっきりと書かれておらず、「任意の1次関数\(g(x)\)」となっている では任意の1次関数とはいったいどう表現したらいい? 解き方の手順①まず\(c\)の値を求める②任意の1次関数\(g(x)\)を考える③\(f(x)\)と\(g(x)\)を\(\int_0^{1} f(x)g(x)dx=0\)に代入して計算する④恒等式の考え方で\(...
指数関数・対数関数

相加・相乗平均の使い方は?2つの正の数の和の最小値をもとめよう!\[a=log_2x,b=log_8yとする\\a+3b=6のとき\\x+yの最小値を求めよ\]

対数を含む関数の最大値と最小値を求める方法はいくつかあるが、今回は相加・相乗平均を使って解く方法を説明する 問題2つの正の数の和の最大値や最小値を求めたいとき\[「x>0、y>0、xyの値が一定の数」\]ならば、相加・相乗平均を使って解くと覚えよう この問題は、\(a=log_2x,b=log_8y\)、対数の真数は正の数なので、\(x>0,y>0\)とわかっている したがって、\(xy\)が一定の数字かどうかがわかればよい 解き方の手順①底を変換する②\(a=log_2x\)と\(b=\frac{1}{3}log_2y\)を\(a+3b=6\)に代入して計算する③\(xy\)は一定の数とわかったので相加・相乗平均を使って最小値を求める 問題を解き始める前に底を揃えておこう \(a\)の値と\(b\)の値は底が違っているので先に底を変換し揃えて...