
範囲が決まっていない三角関数の最大値と最小値はこうやって考えよう\(y=sinx+2cosx\)の最大値と最小値を求めよ
問題を解く手順①三角関数の合成をする②最大値と最小値を見つける まず最初に三角関数の合成をする 1つの式の中に\(sin\)と\(cos\)があるので三角関数の合成を行い、\(sin\)だけの式にすると続きを考えやすくなるよ 「三角関数の合成」の方法 この合成の式に当てはめて計算すると…\(y=\sqrt{1^2+2^2}sin(θ+α)\)よって \(y=\sqrt{5}sin(θ+α)\)ただし、\(sinθ=\frac{2}{\sqrt{5}}\) , \(cosθ=\frac{1}{\sqrt{5}}\) ※この問題のように\(α\)の値がはっきりしないときは\(α\)としたまま考えていこう(\(sin\)と\(cos\)の値は書いておくこと) 合成ができたら最大値と最小値を考えよう 今回の問題のポイントは範囲がないこと 範囲がないということは、\(sin(θ...