いろいろな数列の和で\(Σ\)の式の作り方
簡単な等差数列や等比数列ならばすぐに\(Σ\)の式を作れるけれど、少し複雑になると式が作れなくなる、という人は意外とたくさんいます そして解説を読んで納得できても「そんなの思いつかない」「閃かない」と悪態をつく… でも高校数学の問題は「思いつき」や「閃き」で解くものではなく、公式や仕組みを理解し、そして「解法のパターンを暗記」すれば簡単に解けます 以下はいろいろな数列の\(Σ\)の式を作るときのパターンの紹介です ※数列を因数分解でまとめる詳しい方法はこちら ※各項が数列の和になっている数列の一般項の求め方 第\(k\)項\(a_k\)は因数ごとに分けて考える 数列の和は、第\(k\)項\(a_k\)を求め、\(\sum_{k=1}^{n}a_k\)を計算すれば求めらます計算は複雑ですが立式はめちゃくちゃ簡単です さらっと「簡単です」と言い切られても、数学が苦手な人に...